INFLATION

Contents

I. MOTIVATION	3
II. INFLATON SCALAR-FIELD MECHANISM FOR INFLATION	4
A. Inflaton Potential Must Be Slow-Rolling	4
B. Inflaton Must Efold $N = \int_{t_i}^{t_f} H dt \ge 60$ Times	5
C. Reheating	5
III. PRODUCTION OF DENSITY PERTURBATIONS	6
A. Accelerating System Vacuum Has Gibbons-Hawking Temperature (Analogous to	
Hawking Temperature of Black Holes)	6
B. Thermal Fluctuations in Inflation Field, Energy Density At Each Wavenumber k	6
C. Primeval Fluctuations Pass Outside Horizon, Re-enter After Inflation Expands	
Horizon	6
D. RMS Fractional Density Fluctuations Define Dimensionless Power Spectrum	7
E. Evaluate At Different Times, When Each Physical Mode Crosses Hubble Horizon	1
$H(t)^{-1}$	7
F. Parameterize Their Scale Dependence By S, T Spectral Indices	7
G. Single Slow-Roll Inflaton Requires Consistency Condition Between S, T	
Temperature Fluctuations	7
IV. PREDICTIONS OF INFLATION	8
V. WMAP OBSERVATIONS OF CMB AGREE WITH INFLATION	8
A. Cosmological Parameters: Best 6-Parameter Fit to Flat ΛCDM Model	8
B. Conclusions	9

References:

- O. Lahav, Review of Particle Physics, astro-ph/0601168
- S.M. Carroll, Spacetime and Geometry (addison-Wesley, 2004), Ch. 8.8
- V. Mukhanov, Physical Foundations of Cosmology (Cambridge, 2005), Ch. 5

I. MOTIVATION

- 1. Cosmological Phase Transitions: Cosmological evolution is through nonadiabatic (irreversible) phases, wherein **entropy** $(RT)^4$ is generated.
- 2. Early phase of exponential expansion, cooling $\mathcal{O}(10^{29} \text{ invoked to explain present universe})$
 - Homogeneity
 - Increased Present Horizon: present sky was in causal contact at $z\sim 1100$
 - Near flatness requires ¿60 efolds of expansion
 - Inflation must be **ended** by reheating
- 3. Historical
 - Guth originally 1⁰ phase transition couldn't be completeted by percolation (bubble formation)
 - "New Inflation" was 2⁰: reheated, but quantum fluctuations led to density perturbations too large
 - Present Paradigm: VEV of a scalar field inflation breaks the GUT symmetry

II. INFLATON SCALAR-FIELD MECHANISM FOR INFLATION

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

 $H^2 = (\varkappa^2/3)(\dot{\phi}^2/2 + V(\phi)), \qquad \varkappa^2 := 8\pi G_N := 1/M_P^2$

A. Inflaton Potential Must Be Slow-Rolling

$$\dot{\phi}^2 \ll V(\phi), \qquad |\ddot{\phi}| \ll |3H\dot{\phi}|, \quad |V(\phi)|$$
$$2\epsilon := M_P^2 (V'/V)^2, \qquad \eta := M_P^2 (V''/V)$$

Necessary, but not sufficient, for an attractor=prolonged inflationary phase.

Nevertheless, extreme initial conditions could be chosen that would never be attracted into inflationary phase.

B. Inflaton Must Efold $N = \int_{t_i}^{t_f} H dt \ge 60$ Times

Last scattering surface is proper distance $d(t_0) = 14 \ Gpc$ back from now. If inflation ended at $t_f \sim 10^{-34} \ sec$, $z_f = 5 \ 10^{27}$, visible universe was then $d(t_f) = d(t_0)/z_f = 0.9 \ m$ in size. If inflation lasted N > 60, $\exp -N < 7 \ 10^{-27}$, before inflation our visible universe was $d(t_i) < 6 \ 10^{-28} \ m$ in size, within horizon $H^{-1} = 3ct_i = 9 \ 10^{-28} \ m$, small enough to causally equilibriate before starting inflation.

q constrains inflatons to be weakly coupled.

C. Reheating

When inflation ends, inflaton field \Rightarrow thermal relics.

Want Standard Model particles to be preserved, but some relics (e.g. GUT magnetic monopoles, SUSY gravitinos) to be diluted away.

Reheat to high enough temperature to allow baryogenesis.

III. PRODUCTION OF DENSITY PERTURBATIONS

A. Accelerating System Vacuum Has Gibbons-Hawking Temperature (Analogous to Hawking Temperature of Black Holes)

$$T_{GH} = H/2\pi \approx \sqrt{\varkappa^2 V/3}/2\pi$$

B. Thermal Fluctuations in Inflation Field, Energy Density At Each Wavenumber k

$$|\delta\phi_k| \sim \varkappa \sqrt{V}, \qquad \delta\rho = V'(\phi)\delta\phi$$

are small, nearly independent of k (Harrison-Zeldovich).

C. Primeval Fluctuations Pass Outside Horizon, Re-enter After Inflation Expands Horizon

At early times, most cosmological perturbations were well outside horizon. Distinguish primeval fluctuations:

- Curvature (Isentropic, Adiabatic): Fluctuations in energy density $\delta \rho \neq 0 \rightarrow$ fluctuations in in spatial curvature; entropy density $s \sim nT^3 = constant, \delta s = 0, \delta T/T = \delta n/3n$
- **Isocurvature(Entropic, "Isothermal")** :Fluctuations only in local composition, equation of state, change the entropy $\delta \rho = 0 : \delta s \neq 0$

After inflation expands horizon, fluctuations re-enter the horizon, convert isocurvature into curvature fluctuations.

D. RMS Fractional Density Fluctuations Define Dimensionless Power Spectrum

$$\left(\frac{\delta\rho}{\rho}|rms\right)^{2} := \int \Delta^{2}(k)d(\ln k)$$
$$\Delta^{2}(k) \equiv \frac{k^{3}|\delta_{k}|2}{2\pi^{2}}$$

 $\delta_k \equiv$ Fourier transform of fractional density perturbation, assumed to be isotropic.

E. Evaluate At Different Times, When Each Physical Mode Crosses Hubble Horizon $H(t)^{-1}$

Scalar Mode Amplitude: $A_S^2(k) \equiv \Delta^2(k)|_{k=ah} \sim \varkappa^4 V/\epsilon$

Tensor Mode Amplitude: $A_T^2(k) \sim \varkappa^4 V$ depends only on energy density, not on derivative ϵ .

Amplitude ratio: $r := A_T^2(k)/A_S^2(k)$, evaluated at k=0.002/Mpc.

F. Parameterize Their Scale Dependence By S, T Spectral Indices

$$A_S^2 \propto k^{n_S - 1}, \qquad n_S = 1 - 6\epsilon + 2\eta$$
$$A_T^2 \propto k^{n_T}, \qquad n_T = -2\epsilon.$$

G. Single Slow-Roll Inflaton Requires Consistency Condition Between S, T Temperature Fluctuations

$$\frac{(\Delta T/T)_T^2}{(\Delta T/T)_S^2} = -7n_T$$

Can be distinguished by polarization of observed CMB fluctuations:

Scalar: E polarized, curl-free as electrostatic field

Tensor: B polarized, divergence-free, as magnetostatic field

IV. PREDICTIONS OF INFLATION

Adiabatic density fluctuations: nearly scale-invariant (Harrison-Zeldovich)

- **Gaussian:** fluctuations at different scales are uncorrelated; different species might be correlated (entropic rather than adiabatic fluctuations are possible)
- Tensor Modes (gravitational wave relicts) Are Expected: would be revealed by observing B-mode polarization; measuring n_T

V. WMAP OBSERVATIONS OF CMB AGREE WITH INFLATION

A. Cosmological Parameters: Best 6-Parameter Fit to Flat ΛCDM Model

$$\Omega_m h^2, \Omega_b h^2, h; n_s, \tau, \sigma_8 = 0.127, 0.0223, 0.73; 0.951, 0.09, 0.74$$

with better than 10% uncertainties (Precision Cosmology!).

 $\sigma_8 :=$ linear theory amplitude of matter fluctuations on scale $8h^{-1}$ Mpc.

 $\tau :=$ optical depth at reionization.

 $n_S :=$ scalar spectral index at 0.002/Mpc.

B. Conclusions

- Concordance Model: Little room for significant improvement of 6 parameter model. Allowing extra parameter, spectral index n_S running, would not improve the fit significantly.
- Dark Matter (nonbaryonic): Exists, dominates the clustered components.
- Nearly Flat Universe: Requires "dark energy" that is nearly static w=-1, cosmological constant. WMAP evidence is supported by baryon (acoustic) oscillations, supernovae, large scale structure.
- **Tensor Modes Are Required:** unless allow $n_S < 1$ fit to angular power spectrum. Will be tested for in B-modes.
- Non-Gaussian (correlated modes) Angular Power Spectrum: no significant evidence, but could better fit low l angular power spectrum